Homework 7
Directions: Turn in your answers in class on a physical piece of paper. Staple multiple sheets together. Feel free to use Desmos for graphing.
Answer the following:
- Use addition/subtraction formulas to find the following values:
- $\sin 75^\circ$
- $\cos \dfrac{11\pi}{12}$
- $\sin18^\circ \cos27^\circ + \cos18^\circ\sin27^\circ$
-
Prove these identities. Remember: do not assume the statement you are trying to prove. Start from one side!
-
$\cos(x + y)\cos(x - y) = \cos^2 x - \sin^2 y$
-
$\sin(x + y) - \sin(x - y) = 2\cos x \sin y$
-
$\tan(x - \pi) = \tan x$
- Also justify why this statement is true using the graph of tangent.
-
$1 - \tan x \tan y = \dfrac{\cos(x + y)}{\cos x \cos y}$
-
$\cos\left(x + \dfrac{\pi}{3}\right) + \sin\left(x - \dfrac{\pi}{6}\right) = 0$
- Solve the following equations for $\theta$:
- $\cos \theta = \dfrac{\sqrt{3}}{2}$
- $\sin \theta = -\dfrac{\sqrt{3}}{2}$
- $4 \sin^2 \theta - 1 = 0$
- $\sqrt{2}\sin \theta + 1 = 0$
- $2\sin^2\theta + 5\sin \theta - 12 = 0$
- $2\cos^2\theta - 7\cos\theta + 3 = 0$
- $\sqrt{2}\tan\theta\sin\theta - \tan\theta = 0$
- $\cos\dfrac{\theta}{2} - 1 = 0$
- $2\sin\dfrac{\theta}{3} + \sqrt{3} = 0$
- Solve the following equations for $\theta$ by using identities:
- $\sin^2\theta = 4 - 2\cos^2\theta$
- $\cos\theta - \sin\theta = 1$
- $\csc^2\theta = \cot \theta + 3$
- Plot the point $(4, \pi / 4)$.
- Convert these polar coordinates to rectangular coordinates:
- $(6, 2\pi/3)$
- $(\sqrt{3}, -5\pi/3)$
- Convert these rectangular coordinates to polar:
- $(\sqrt{8}, \sqrt{8})$
- $(3\sqrt{3}, -3)$
- Convert these functions into polar form:
- $y=x$
- $x^2 + y^2 = 9$
- Convert these polar equations into rectangular form:
- $r = 7$
- $r = \dfrac{1}{\sin \theta -\cos \theta}$
- $r = 6\cos \theta$