Homework 4


Directions:

  1. Show each step of your work and fully simplify each expression.
  2. Turn in your answers in class on a physical piece of paper.
  3. Staple multiple sheets together.
  4. Feel free to use Desmos for graphing.


Answer the following:

  1. Determine whether the following sequences are convergent or divergent. For the ones that converge, find out what it converges to.
    1. $a_n = 2^{-n} + 6^{-n}$
    2. $a_n = \dfrac{10^n}{1 + 9^n}$
    3. $a_n = \dfrac{3^{n+2}}{5^n}$
    4. $a_n = \dfrac{n^5 + n^3}{4n^2 + \sqrt[3]{n^{19}}}$
    5. $a_n = \dfrac{2^n + 3^n}{5^n}$
    6. $a_n = \dfrac{e^n + 2e^n}{1 + e^n}$
    7. $a_n = \dfrac{3^n}{1 + 4^n}$
    8. $a_n = \dfrac{4^{-2n} - 2^{-n}}{4^n + 2^n}$
    9. $a_n = \dfrac{n^3}{\sqrt{n^7 + 1}}$
  2. Find the limit:
    1. $\displaystyle\lim_{x\rightarrow \infty} 3^{-x}$
    2. $\displaystyle\lim_{x\rightarrow\infty} \dfrac{3x - 2}{2x + 1}$
    3. $\displaystyle\lim_{x\rightarrow\infty} \dfrac{5}{10^x}$
    4. $\displaystyle\lim_{x\rightarrow\infty} \left(\sqrt{9x^2 + x} - 3x\right)$
    5. $\displaystyle\lim_{x\rightarrow\infty} (x^4 + x^5)$
    6. $\displaystyle\lim_{x\rightarrow-\infty} (x^4 + x^5)$
    7. $\displaystyle\lim_{x\rightarrow-\infty} \dfrac{1 - e^x}{1+2e^x}$
    8. $\displaystyle\lim_{x\rightarrow-\infty} \left(e^{-x} + 2\cos 2x\right)$
  3. Suppose $f(x)$ is a function. Explain in English the intuition (not the definition) behind the symbols \[\lim_{x\rightarrow a}f(x) = L\] means.
  4. In class we discussed two ways of estimating the expression \[\lim_{x\rightarrow a} f(x)\] Does the limit see what happens exactly at the $x$-value $a$?
  5. Using the table method, find the following limits. Then compare the limit with plugging in the limit value.
    1. $\displaystyle \lim_{x\rightarrow 3} \dfrac{x^2 - 3x}{x^2 - 9}$
    2. $\displaystyle \lim_{t\rightarrow 0} \dfrac{\sqrt{t^2 + 4} - 2}{t^2}$
    3. $\displaystyle \lim_{h\rightarrow 0} \dfrac{(h - 3)^3 + 27}{h}$
    4. $\displaystyle \lim_{x\rightarrow 9} \dfrac{\sqrt{x} - 3}{x^2 - 9x}$
    5. $\displaystyle \lim_{t\rightarrow 0} \dfrac{\sin t}{t^2}$