Homework 4
Directions:
- Show each step of your work and fully simplify each expression.
- Turn in your answers in class on a physical piece of paper.
- Staple multiple sheets together.
- Feel free to use Desmos for graphing.
Answer the following:
-
Determine if the following limits are $-\infty$ or $\infty$:
- $\displaystyle \lim_{x\rightarrow-3^+}\dfrac{x+2}{x+3}$
- $\displaystyle \lim_{x\rightarrow-3^-}\dfrac{x+2}{x+3}$
- $\displaystyle \lim_{x\rightarrow1}\dfrac{2-x}{(x-1)^2}$
- Given the following functions $f(x)$ and $g(x)$:
Find the following limits, if it exists. If it doesn't, explain why.
- $\displaystyle \lim_{x\rightarrow 2}\ [f(x) + g(x)]$
- $\displaystyle \lim_{x\rightarrow 1}\ [f(x) + g(x)]$
- $\displaystyle \lim_{x\rightarrow 0}\ [f(x)g(x)]$
- $\displaystyle \lim_{x\rightarrow 2}\ [x^3f(x)]$
- $\displaystyle \lim_{x\rightarrow 1}\ \sqrt{3 + f(x)}$
- Find the following limits using limit laws:
- $\displaystyle\lim_{x\rightarrow 1} \sqrt{\dfrac{2x^2 + 2}{2x^2 - 1}}$
- $\displaystyle \lim_{x\rightarrow 5}\dfrac{x^2 - 6x + 5}{x - 5}$
- $\displaystyle \lim_{h\rightarrow 0}\dfrac{(4+h)^2 - 16}{h}$
- $\displaystyle \lim_{x\rightarrow 0}\dfrac{\sqrt{x^2 + 9} - 3}{x^2}$
- $\displaystyle \lim_{x\rightarrow 5}\dfrac{4 - \sqrt{x}}{16x - x^2}$
- $\displaystyle \lim_{x\rightarrow 0}\dfrac{1}{x} - \dfrac{1}{x^2 + x}$
- $\displaystyle \lim_{t\rightarrow-3}\dfrac{t^2 - 9}{2t^2 + 7t +3}$
- $\displaystyle \lim_{x\rightarrow 0}\dfrac{\sin 3x}{x}$
- $\displaystyle \lim_{t\rightarrow 0}\dfrac{\tan 6t}{\sin 2t}$
- $\displaystyle \lim_{x\rightarrow 0}\dfrac{\sin^2 4t}{t^2}$
- For the following problems, sketch the graph of $f$ and find $\displaystyle \lim_{x\rightarrow a} f(x)$, if it exists.
- $f(x) = \begin{cases} x^2 & x \leq 1 \\ x-1 & x > 1\end{cases}, \qquad a = 1$
- $f(x) = \begin{cases} x^2 - 3 & x \neq 0 \\ 0 & x = 0\end{cases}, \qquad a = 0$
- Use the squeeze theorem to show \[\lim_{x\rightarrow 0}x^2 \cos (20\pi x) = 0\]
- If $ 4x - 9 \leq f(x) \leq x^2 - 4x + 7$ for all $x \geq 0$, find $\lim_{x\rightarrow 4}f(x)$.
- Given this graph of $f(x)$
Determine which statements are true or false.
- $\displaystyle\lim_{x\rightarrow 0^-} f(x) = 0$
- $\displaystyle\lim_{x\rightarrow 0^+} f(x) = 0$
- $f(1)$ is defined.
- $\displaystyle\lim_{x\rightarrow 2} f(x) = f(2)$
- $\displaystyle\lim_{x\rightarrow 1} f(x)= 1$
- $\displaystyle\lim_{x\rightarrow 3^-} f(x)= \lim_{x\rightarrow 3^+}f(x)$
- Suppose a function $f(x)$ has $f(2) = 5$ and $\displaystyle \lim_{x \rightarrow 2}f(x) = 5$. Is the function continuous at $x = 2$?
-
Use the definition of continuity to explain why the function is discontinuous at the given number $a$. Sketch the graph of the function.
- $\displaystyle f(x) = \begin{cases}e^x & x < 0 \\ x^2 & x \geq 0\end{cases} \qquad a = 0$
- $\displaystyle f(x) = \begin{cases}x + 5 & x < 0 \\ 2 & x = 0 \\ -x^2 + 5 & x > 0\end{cases} \qquad a = 0$