Homework 7
Directions:
- Show each step of your work and fully simplify each expression.
- Turn in your answers in class on a physical piece of paper.
- Staple multiple sheets together.
- Feel free to use Desmos for graphing.
Answer the following:
- For each of the following functions, do the following:
- Find the values of all local minima and maxima.
- Find the intervals where $f(x)$ is increasing and decreasing.
- $f(x) = x^3 - 3x^2 - 9x + 4$
- $f(x) = 2x^3 - 9x^2 + 12x - 3$
- $f(x) = x\sqrt{6-x}$
- $f(x) = \dfrac{x}{x^2 + 1}$
- $f(x) = (x+1)^5 - 5x - 2$
- $f(x) = x - \sin x$ on the interval $0 \leq x \leq 4\pi$.
- For each of the previous functions, find all the inflection points and the intervals of concavity.
- Sketch a graph of a function which satisfies the following conditions:
- $f'(0) = f'(2) = f'(4) = 0$
- $f'(x) > 0$ when $x < 0$ or $2 < x < 4$
- $f'(x) < 0$ when $0 < x < 2$ or $x > 4$
- Sketch a graph of a function which satisfies the following conditions:
- vertical asymptote $x = 0$
- $f'(x) > 0$ when $x < -2$
- $f'(x) < 0$ when $x > -2$ and $x \neq 0$
- $f''(x) < 0$ when $x < 0$
- $f''(x) > 0$ when $x > 0$
- Sketch a graph of a function which satisfies the following conditions:
- $f'(5) = 0$
- $f'(x) < 0$ when $x < 5$
- $f(x) > 0$ when $x > 5$
- $f''(2) = 0$ and $f''(8) = 0$
- $f''(x) < 0$ when $x < 2$ or $x > 8$
- $f''(x) > 0$ when $2 < x < 8$
- A function $f(x)$ has the graph of its derivative $f'(x)$ shown below:
Answer the following:
- On what intervals is $f(x)$ increasing and decreasing?
- At what values of $x$ does $f(x)$ have a local maximum and minimum?
- What intervals are $f(x)$ concave upward and downward?
- State the $x$-coordinates of the point(s) of inflection.
-
Use the Second Derivative Test to find the local maximums and minimums for the following functions:
- $f(x) = \dfrac{1}{2} x^4 - 4x^2 + 3$
- $f(x) = 5x^3 - 3x^5$
-
In Section 3.1 we saw the function $f(x) = x^{2/3}$ had a local minimum in the shape of a corner at $x = 0$. If we were to use the Second Derivative Test to find this local minimum, why are we unable to detect the local minimum?
- Find all local extrema of \[f(x) = x^2 - 2x\] using the Second Derivative Test.
-
Given this function $f(x)$
find the following:
- $\displaystyle\lim_{x\rightarrow 0}f(x)$
- $\displaystyle\lim_{x\rightarrow 2^-}f(x)$
- $\displaystyle\lim_{x\rightarrow 2^+}f(x)$
- $\displaystyle\lim_{x\rightarrow \infty}f(x)$
- $\displaystyle\lim_{x\rightarrow -\infty}f(x)$
- Find all vertical and horizontal asymptotes.
The rest of these problems will appear on next week's homework. Skip the rest of these for this homework.
- Find the limit or show it does not exist:
- $\displaystyle \lim_{x\rightarrow \infty} \dfrac{3x - 2}{2x + 1}$
- $\displaystyle \lim_{x\rightarrow -\infty} \dfrac{4x^3 + 6x^2 - 2}{2x^3 - 4x + 5}$
- $\displaystyle \lim_{x\rightarrow \infty} \cos(x)$
- $\displaystyle \lim_{x\rightarrow \infty} (\sqrt{9x^2 + x } - 3x)$
- $\displaystyle \lim_{x\rightarrow \infty} \dfrac{x^2}{\sqrt{x^4 + 1}}$
- $\displaystyle \lim_{x\rightarrow \infty} \dfrac{x}{x^2 + 1}$
- $\displaystyle \lim_{x\rightarrow \infty} \dfrac{\sqrt{1 + 4x^6}}{2 - x^3}$
- $\displaystyle \lim_{x\rightarrow \infty} (x^2 - x^4)$
- Sketch a graph of the function which satisfies the following:
- $f'(2) = 0, \ f(2) = -1, \ f(0) = 0$
- $f'(x) < 0$ when $0 < x < 2$
- $f'(x) > 0$ when $ x > 2$
- $f''(x) < 0$ when $0 < x < 1$ or $x > 4$
- $f''(x) > 0$ when $1 < x < 4$
- $\displaystyle \lim_{x\rightarrow \infty} f(x) = 1$